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ABSTRACT. The Lanczos algorithm generates Ritz values in order to

approximate eigenvalues. If some eigenvalues are clustered then a Ritz

value may hover at a wrong value for a good number of steps. We study

this phenomenon and focus on the point of discovery, the first step at

which it is certain that there is a hidden eigenvalue in the vicinity of

stabilized Ritz values. Both before and after this point the Ritz value

behavior is routine - but for different eigenvalue configurations.

The "effective spread" at step j is an interval guaranteed to

contain all unknown eigenvalues. The notion of "Ritz intervals" leads

to a computable counterpart to the exact theory.
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1. INTRODUCTION

When the Lanczos algorithm is applied to a symmetric nxn matrix A it

produces, at step j, an unreduced tridiagonal matrix T. whose eigen-J

values

80J) < 80j) < ... < o j

1 2 J

will be called the jth set of Ritz values. The final set of Ritz values

are the eigenvalues of A,

= n = (n)
1 1 n'=" n

We may assume, without loss of generality, that the {Ai} are all distinct

from each other. The characteristic polynomial of T. isJ

j ej
x()= T-I" ( - • ) •i=l

One attraction of the Lanczos algorithm is that in most cases for small

values of j, but j ? max{10, -A-), some extreme Ritz values from the

jth set are very good approximations to me extreme eigenvalues of A.

Error bounds on 181J ) - A i were given in (Kaniel 1966; Paige 1972;

Saad 1980). Here we concentrate on a related question concerning

occasional eccentric behavior of the Ritz values. When a cluster of

(unknown) eigenvalues has a spread that is 1% or less of neighboring

eigenvalue gaps then a Ritz value can hover at the mean of the cluster

for 8 or more successive values of j before making an abrupt shift to

one of the eigenvalues. This phenomenon is called miscnvergezce (see

Parlett et al., 1982). It was studied very carefully in (van der Sluis

and van der Vorst 1987) and we shall refer frequently to this paper.

We offer a simple description of this odd Ritz value behavior that

complements the detailed error bounds in (S. and V. 1987). We find it

necessary to look beyond the Ritz values near the cluster for a simple
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explanation and are lead to the effective spread which gives the allow-

able range for the unknown eigenvalues at each step. This concept is

useful in describing the actual convergence rate of the conjugate

gradient algorithm.

After some preliminaries the paper is organized as follows. The

example in (S. and V. 1987) and a snapshot of the paper's many results

is followed by our formal description in Section 5. Then, by using

Paige's persistence theorem, we can offer a constructive theory that

avoids reference to unknown quantities. Finally we present a theorem

which shows that the special value of j at which the presence of a

hidden eigenvalue is detected (the point of discovery) can be character-

ized by the occurrence of a local minimum in the error bound of the

misleading stagnant Ritz value.

The figures and charts are worth a thousand words.

2. ORTHOGONAL POLYNOMIALS

By Cauchy's interlace theorem (Parlett 1980, Chap. 10 or S. and V. 1987)

each set of Ritz values interlaces the next set. Moreover, the charac-

teristic polynomials are orthogonal with respect to a special discrete

inner product function

n
I w # i(,i)J(x i ) •

k=l

Each positive weight (wi) is the squared cosine of the angle between the

it* eigenvector of A and the starting vector of the Lanczos algorithm.

Thus the whole set of Ritz values is determined by the inner product and

this point of view is the fundamental one. It follows from orthogonality

that each Xj is minimal (Szego 1939):

x! = =n in 11
J
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over all monic polynomials # of degree not exceeding j. Here

I1 <,:>= •

The drawback of this approach is that in the Lanczos context < , > is

unknown and the xj are built up one at a time.

We shall employ both viewpoints in this paper.

3. THE DUTCH EXAMPLE

The following values are used in (S. and V. 1987).

X1 = .0340 , A 2 = .0341 , X3 = .0820 ,

X4 = .127 , AS = .155 , X6 = .190 ,

A7''" Aoo uniformly spaced in (.2, 1.2].

w. = 1/900, i = l,...,900 .1

It should be emphasized that X and X are not to be considered

pathologically close. The gap poses no difficulties to current software

when invoked using numbers with at least 14 decimal digits. The question

here is how many more steps does the Lanczos algorithm require to find

X and A than to find A ?
1 2

Figure 1 shows those Ritz values that are near A and A for
1 2

j = 7,...,30. For j = 20,...,25

.03404952 4 80 ) 4 .03404999

so the changes during this stagnation phase are smaller than 1% of the

actual error, 90 ) - A1

In (S. and V. 1987) the behavior of 80 ) is divided into three1

phases:

i) normal (rapid) convergence of 81 to the mean ( 1 +A2)/2,

j = 1,...,18.

ii) stagnation at the mean, j = 19,...,27.
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iii) normal (rapid) convergence to X in step with normal (rapid)

convergence of 80 ) to A , j = 28,...,33.2 2

4. ERROR BOUNDS

The Kaniel-Paige-Saad error bounds, see (Parlett 1980, Chap. 12), give

upper bounds on the "errors" 0 ) - A, k = 1,2,... in terms of
1 I

limited information about the other eigenvalues. Here we mention that

each polynomial of degree j yields an upper bound on 8 ) - A
1 1

(and A - 8(J)) and, by specializing the choice, one can obtain boundsn j

on 80) - Ak for higher values of k.

In (S. and V. 1987) a number of theorems are proved that yield

expressions for the particular steps in a Lanczos run that separate the

three phases exhibited in the numerical example. The analysis uses

several nearby inner products and their associated Ritz values for

comparison purposes. The natural comparison is the inner product in

which Al and A are replaced by

M := W(AI + A2

and the weight is adjusted according to w = -2. The associated Ritz

values are denoted by i =1,...,j.

We quote one result that determines for how many steps (i) remains

very close behind to 6 (i). Accession For
NTIS GRA&I
DTIC TAB
Unannounced
qM I catio

Distributionn/

Availability Codes
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Property 8.17. Assume 0 < a < X and
i+l

(X 2-X 1) 1k X I X (8.18)

k=3 k

If, for 0 E (0, 1-t),

(i) M - ( (,-X )t/2p (8.20)
1 2 1

then
8 i) - N

1 > l- 9 -p (8.21)_M

When t and p have been chosen appropriately the theorem says

that it is the eventual violation of (8.20) that breaks OM's bondage

to (i) In the example t < .0131 and so p 0.2 is a valid

choice that yields a value 0.33 x 10-  for the right side of (8.20).

This is violated (barely) at Step 18 which Fig. 1 reveals as the

end of Phase 1.

Different theorems are used to characterize the duration of the

stagnation phase and the final convergence of 80 ) and 00 ) to
1 2

X and XA.

5. THE POINT OF DISCOVERY

The many quantitative results in (S. and V. 1987) give a very accurate

description of the behavior of 00 ) and 80 )  as j increases, in
1 2

terms of the eigenvalues. However two distinct aspects of the process

are fused in those theorems: the routine and the exceptional. We

suggest an alternative description based on a single whole number, the

step at which the comparison scheme must be discarded.



There is an index j, the point of diacovery, at which

the process "perceives" that there must be a hidden

eigenvalue in the vicinity of the stagnant Ritz values.

Prior to step j the Ritz value development is routine -

but for the comparison scheme wherein the close eigenvalues

are pushed to their mean value. After step j the

development is also routine - for the true regime.

In the Dutch example the point of discovery is step 24. However

this fact cannot be deduced from a local analysis of 00 ) or even of

9(1 8( . and 8(3)* Such a specific naming of the discovery point

is an artefact of our definition as well as of the situation itself.

Our choice, given in Section 8, has the attractive feature that no

knowledge of the true eigenvalues is needed to determine it. A simpler

definition of the discovery point, arising from notions to be given in

this section, would put the discovery at step 22 but this approach

requires knowledge of the eigenvalues to high accuracy.

We mention here that it is only after step 24 that 90 ) approximates
k

Ak for k = 1,2,3,4 and 5. Before that there is some mismatch between the

indices of Ritz values and of the eigenvalues they approximate. When we

say that the development is routine we mean that the Kaniel-Paige-Saad

error bounds are quite sufficient to describe how well certain eigen-

values are approximated at each (routine) step.

In order to justify this description of Ritz value behavior some

preparation is necessary.

Figure 2 shows the positions of the smaller Ritz values for the

comparison inner product (wherein A and A are moved to their mean).1 2

The horizontal bars denote intervals guaranteed to corntain an eigenvalue.

The configuration within the crowded interval [.2, 1.2], where 894 eigen-

values are located, is of little direct concern in this study and it is
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not shown. The pattern revealed in Figure 2 should be considered routine

for all steps. The gaps between the six smallest eigenvalues are fairly

uniform.

Recall that (xj n denotes the sequence of orthogonal polynomials

associated with an inner product.

DEFINITION. For a given inner product and any ( E P,

* Left(j; () := the number of zeros of Xj that are less than C.

* Right(j; C) := the number of zeros of X that exceed f.

LEMiA 1. For a fixed ( both Left(j;() and Right(j;() are

Aonotone noodecreasing in j.

This result is a direct consequence of the interlacing property.

In fact, for all j,

0 4 Left(j+l; C)- Left(j; t) 4 1

From now on we confine the discussion to discrete inner products with

n points of increase. What is of interest is the smallest index i at

which Left(i; f) attains its maximum value Left(n; C), the number of

eigenvalues less than f.

Figure 2 reveals that at step 18 the three smallest eigenvalues

are marked by the three smallest Ritz values while (i ) ) > A . ThisS 7

suggests the following definitions:

(Note that Left(k, %(Ai+ i~l)) % i = Left(n, %i(A + i+l)))

* L(j) : min{i: Left(j; %(A i+i+l)) < i) I

0 R(j) := min(i: Right(j, %(Xn-i+Xn i+l)) < i)

0 The effective spreed at step j := AL(j) - AR(j)

* The eigenvalues outside [AL(j), AR(j)] are said to be
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mrked (at step j).

The effective cmdition number for the assocaited Conjugate

Gradient Algorithm (when 0 < Xi < ... < An) is

XR(j)/XL(j) '

The following result gives substance to the words "marked" and

"spread" used above.

LEMMA 2. For each k > j (but k 4 n),

*(k) E [Xi, (J)] for i = 1,2,...,L(j)- ,

*(k) E [8() X 1 1 for i 1,2,...,R(j)-I
k+l-i j+l-i' n+1-1

9(k) E [XL(i), AR(j)] , for L(j) I 4 k+l-R(j)

Proof. The first two assertions are direct consequences of the

interlace property and the definition of L(j) and R(j). Recall that

A 8 n)A. = e9n).
i 1

The third assertion is seen by contradiction. Suppose

9 (k) < A for some k j, then
L(j) L(j)

Left(k, XL(j)) L(j) > L(j)-l = Left(n, AL(j))

The first inequality follows from the definition of Left, the final

equality follows from the definition of L.

This inequality contradicts the fact that Left(j, () is monotone

nondecreasing in j (i.e. Lema 1). Similarly (k)_ cannot
k+l-R(j)

exceed A R(j) for any k ? j. 0

Without knowledge of the (Xi} the indices L(j) and R(j) will

also be unknown. We provide a computable alternative in Section 8.

Here we seek only to explain Ritz value behavior. In order to quantify

the late recognition of eigenvalue clusters we need one more elementary
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consequence of the interlacing property. L(j) is the index of the

miest unmarked eigenvalue. However it can happen that

Left(j, (i +X i+)) = i for some i > L(j). In fact, whenever the

largest index i for which Left(j, %(Xi+i+l )) achieves its maximum

exceeds L(j), then the existence of hidden eigenvalues has been

discovered. This relatively uncommon event occurs in the Dutch example.

It can be seen at step 24 in Figure 3, which shows all the Ritz values

less than 0.2.

To formalize our explanation we make one more pair of definitions:

f max{i: Left(j, V(Xi + Xi+l )) = i}* L(j) 1 i
a 0 , if the set is empty

(maxi: Right(j, V(n+l-i + X n-i)) =i
* R~j) := mxi ~- -

0 , if the set is empty

* The (theoretical) point of Discovery

min{j: L(j) > L(j) or R(j) > R(j)}

We can call the configuration of Ritz values routine whenever

L(j) + 1 = L(j) , R(j) + I = R(j)

6. DISCUSSION OF THE DUTCH EXAMPLE

Figure 3 reveals that, at step 22, 8 X 3 and 03 . There is

every indication that this is a routine case. Comparison with Figure 2

(the comparison scheme) indicates that to within human vision the two

sets of Ritz values are identical through step 20. In the absence of

outside information one assumes that 8(k) is going to converge to an

eigenvalue near 0.12. However a careful inspection of the computed Ritz
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values show that 8(22) = 0.0819858 < A = 0.082. By Lemma 1,
2 3

Left(k,3) * 2 for all k > 22 and so there must be a hidden eigen-

value. So step 22 has a good claim to be the point of discovery.

Such a definition demands full knowledge of the configuration in which

case the existence of A will already be known. Our interest comes

from the practical situation where we want to make inferences about the

unknown eigenvalues from the known Ritz values.

At step 23 8 slips noticeably below X . However it is notAstp2 84 s"

until step 24 that 6 is closer to A than to A and so 84 marks44 5

A before 82 marks X at step 26. Table I reiterates the message of4 2

Figure 3 but does so by means of natural numbers. Moreover, the profile

vector in the table shows the claim of step 22 to be the point of

discovery. Our use of midpoints between eigenvalues in the definition

of L and L accounts for the fact that L(j) does not exceed L(j)

until step 24. This value is corroborated in Section 8. The reward for

using midpoints is that, for i < L(j), 8!J) does actually mark A..
I I

The detailed results in (S. and V. 1987) do not reveal that at step

23 the close pair of eigenvalues near .034 caused the far off sequence

{8 ( to be deflected from its apparent target 4 .127 towards the

hidden pair and the concomittant deflection of { (k) to A". This is

the essential insight provided by Figure 3 which also shows how mislead-

ing it can be to automatically associate 8k) with X or (k)
1 1 6k+l-i

with An+l-i" There is no natural pairing of Ritz values at adjacent

steps. We offer our preferred way of pairing in Section 7.
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Table 1

RITZ VALUE COUNTS

Profile~j) := (Left(jA 3 ) Left(j,A), Left(j,X,), Left(j,A)6

Step L L Profile

10 0 1 1 1 1 2

11 0 1 1 1 2 2

12 0 1 1 2 2 2

15 0 1 1 2 2 3

16 0 1 1 2 3 3

21 1 2 1 2 3 4

22 1 2 2 2 3 4

23 1 2 2 3 4 4

-24 4 2 2 3 44

25 4 2 2 3 4 5

26 5 6 2 3 4 5

36 6 7 2 3 4 5
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7. RITZ INTERVALS

To make a computable theory we shall replace Ritz values by Ritz

intervals. This requires some extra notation. We write

Tj = tridiag I a a2 ... j Pi > 0 , I i < n,
P, ... Pj-1 Phn = 0.

The normalized eigenvectors are denoted by

1--)=() I i = i,... j I s J)l

The ktb element of v is denoted by v(k). Associated with each Ritz

value 89) is a Ritz intverval
1

I(J) = 89) - PjIs P ) WI)I OW + P 1s9 )(J)l I

THEOREM (C. C. Paige). For all k > j (but k 4 n) there exists I

(depending on k and i) such that

a(k) E , i

This useful result is proved and discussed in (Parlett, 1980). The

radius of can be given in terms of xj and Xj_l:

P JP s(J)(j)l  = j-l" i " i

Here 0' denotes the derivative of *. This interesting result does

not seem to occur in (Szego, 1939).

One consequence of this theorem is a useful pairing of the Ritz values

at adjacent steps: Associate to 89) the value 8(j+l) that lies in1 *

19j ) . If this rule does not specify I (=i or i+l) uniquely then choose

the 0 0 + 1) that is closer to )1
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DEFINITIONS.

(J) is isolatedif 19 ) n I?) = (9) n 19 J )• Ii  1-1 1 = = "+l 1 "

" 19 )  is maredif either I J )  is isolated or 89 ) E I J-l)

and I(J-l) is marked.
I

In the event that Ij - ) contains more than one j-level Ritz
I

value we mark only the interval whose center is closer to 80 - 1).

8. THE STANDING HYPOTHESIS

We use marked Ritz intervals to define analogues to L(j) and R(j).

By convention I(J) and Ijl are marked.
0 j+l

DEFINTIONS.

* 1(j) = max(i: 1 0 ) is marked for all nonnegative k < i}

* r(j) = max{i: I _k is marked for all nonnegative k" i}J+l-k
j+l-r(j) 0j)

" The effective apread (at step j) is U I
i=1(j)

" The staod'ng ypothesia (at step j) is that each marked Ritz

interval contains exactly one eigenvalue.

Note that the effective spread may contain some interior isolated Ritz

intervals. In contrast to L(j) and R(j), it is not the case that 1(j)

and r(j) are monotone nondecreasing in j. However we say that a

configuration is routine whenever I and r are monotone. In practice

we use a violation of monotonicity to signal that the standing hypothesis

may be false.

DEFINTION. The (computable) point of diacove =

min{j: 1(j) < A(j-1) or r(j) < r(j-1))
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Table 2 exhibits 1(j) for the Dutch example and the comparison

inner product. The Ritz intervals are indicated by horizontal bars in

Figures 2 and 3.

We now make some comments on the way in which monotonicity is

violated. Consider step 23 in Figure 3. 8 and 8 both belong to3 4

1(22) but 9 is closer to the center. Hence 1(23) is not marked4 3 .6

and J(23) = 4. Again at step 24 both 8 and 8 belong to 1(2 3 )
34 3

a marked interval. This time it is 8 that is closer to the center
4

and so 1(24 ) is unmarked while 1(24 ) is marked. This causes J(24)3 4

to drop down to 3 and signals a hidden eigenvalue. Similarly at step 25

it is i(25) that is unmarked and 1(25) = 2. Not until step 36 is I2 2

disjoint from I and then J(36) leaps up to 6.

The foregoing concepts find a use in comparing two discrete inner

products whose internal structure is not known. We may say that two

inner products approximate each other to degree j if

(1) the 1(i) and r(i) values first differ at i = j+l
and

(2) each marked Ritz interval contains the corresponding Ritz

value of the other scheme.

We can then say that the two inner products studied in this paper approx-

imate each other for polynomials of degree less than 24.

9. THE Ixj. CONNECTION

Figure 3 makes it clear that the actual step at which the presence of

a hidden eigenvalue is revealed must depend on the actual distribution of

a number of eigenvalues, not just those closest to the hidden one. One

should expect a formula for this point to be complicated. Yet it turns

out that the necessary global information is encoded in a computable
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Table 2. MARKED RITZ INTERVAL COUNTS

Step 1 1
(close eigenvalues) (comparison scheme)

7 2 2

13 3 3

18 4 4

23 4 4

-'24 3 4

25 2 5

36 6 6
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number; the radius of the relevant Ritz interval. That is one of the

consequences of the theorem given below.

We abandon the Kaniel-Paige-Saad bounds and consider instead the

relative importance of the contributions of a close pair of eigenvalues

to |Xj,2 .  The fluctuations of this contribution during the stagnation

phase of the Dutch example are shown in Figures 5 and 6 by vertical

spikes located at the eigenvalues. Each A indicates a Ritz value

and a circle cuts off spikes that are too high. The sum of the heights

of all spikes is 10 units.

THEOREM. Let w. = 1/n, i 1,...,n, and let
1

* h : (A 1 - ) ,/2 << min{x - A -l' X,+2 -XJ+l}'

a p ) = X + ) + th, -k < z < , (this defines i),
1 1+1

* C(j, j) { 2 n y(1) + X2

0 T.s = B, a s ,

then

- { ) -12/n h + %2+ O(ht) + 0(h2))
3XjU 3s~l)I

Proof. The conditions on h permit the use of Taylor series to

evaluate C(A,j). Let v~m) denote x~')(8), m = 0,1,2. Then

Xj + (x>)()j-e) + V(x5)(Xj-6)2 + 0(h3 )

xj(A+)=x+(x)(X+l-)+ ,(x)(X8-2 + 0(h3 )

1+1= [jh( ,)]2 {l - + h(8) + O(h) } ,
:x.

21

( ) =x'h(l- 2 {l + h(l-" )} + (h')

C(I,j) = 2 (hx 1+ C 2 - he (3+ .2)} + O(h')
n X•J
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The following properties of tridiagonal matrices may be found in

(Parlett 1980, p.129):

s(1)s(j)xj = P... P -

xjl = P--Pj_lqj

Hence

C(Ij) -h {1 + -h(3 + c) 4 + O(h')
3X = P s(s)

The result follows. 0

In Section 7 we mentioned that the ib Ritz interval of diameter

2pIls(j)l is guaranteed to contain an eigenvalue and thus

(1-)h < P ii := P j s i(J)l "

It is the factor (h/p.i ) that controls C(1,j)/xjII. The constraint

on a in the defintion of h confines j to the stagnation phase in

which the quantity /-n will stay close to 1.

In the comparison scheme of the Dutch example (where A1 = 2 ), Is(1)I

converges rapidly to % 2/n as j increases whereas in the regime

under study Is(l)l does not decline to its limit 1/vrn until 00 )
a

marks X2  at step 27. At the beginning of stagnation the bound Pji

exceeds h by nearly an order of magnitude and C(E,j) is insignificant.

As the bound drops rapidly towards h the ratio C(J,j)/IxjH rises

towards 1 and, at that Aaeut, the minimizing property of the xi forces

an extra Ritz value to be dispatched towards the hidden pair. However

the consequent disruption of the distant Ritz values is reflected in a

temporary increwue in Pji until the end of the stagnation phase.

Thus C(I,j)/Ixj declines steadily only after the point of discovery.

In the Dutch example P28 ,1/P23 ,1 > 10.
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In other words, the discovery step is the

one at which ji has a local minimum.

The preceding analysis shows that, in general, the discovery step

increases only logarithmically with a decrease in h. If h is

divided by 20 and all eigenvalues except for A and X.+, remain

fixed then the point of discovery is delayed by only 3 steps. Here

is the reason.

This step may be characterized as the solution j to

C(1,j) = x ( 1/3 say) (A)

x.II

The proof of the preceding theorem shows that for small h,

C(Ij) = V 2/n h -I---)-
II XjII xilI (B)

Now, j

x'(8) = T ( 6 - (j))
Sm~i m

We approximate this expression by substituting marked eigenvalues for the

p corresponding Ritz values and using a Chebyshev polynomial for the

rest of the expression. Thus,

p
() T7 (8 - Xk)-T (6; [X i , X ]) (C)

k=l k 1 p p+ n

and the first factor is independent of j. For f > 1,

Tk(f) 2 A(f + -l I )k. Moreover, in most cases, when j << n,

11xjU 3  PH (D)

for some fixed p. For the Dutch example, p = 0.27. In general, use

(B),(C),(D) in (A) to see that the discovery value satisfies

hxJ = C
I 2
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for complicated constants x, and x2 . Thus if h is divided by em

then the discovery point will increase by m/In x* This logarithmic

dependence is illustrated in Figure 6 which shows the behavior on the

Dutch example when the gap A -A is reduced to 1% of its original2 1

value.

Acknowledgments. I am grateful to my student, Mr. Yinsun Feng, who

produced the figures which reveal the patterns so clearly.
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FIGURE CAPTIONS

Figure 1. Stagnation of a Ritz value at the mean .03405

Figure 2. Ritz interval development; coincidence eigenvalues at

.03405 starting vector (1 1 ... 1 1)t

Figure 3. Ritz interval development; close eigenvalues .0340

and .0341 starting vector (1 1 ... 1 l)t

Figure 4. Relative magnitude of terms in the squared norm of the

jth orthogonal polynomial n=900. Two close eigenvalues,

.0340 and .0341, next is .0820. A = Ritz value

Figure 5. Relative magnitude of terms in the squared norm of the

jth orthogonal polynomial n=900. Two close eigenvalues,

.0340 and .0341, next is .0820. L = Ritz value.

Figure 6. Ritz interval development; eigenvalue gap = 10-6;

starting vector (1 1 ... 1 1)t
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